Linear Diophantine equations on certain sparse sets (疎な集合上の線形ディオファントス方程式について)

Kota Saito (University of Tsukuba/Sophia University)

上智大学数学談話会

This is joint work with Yuuya Yoshida, Toshiki Matsusaka, and Yuya Kanado, respectively.

 $\S1$ Introduction

Introduction

We begin with the following equation:

$$x + y = z. \tag{1}$$

There are infinitely many tuples $(x, y, z) \in \mathbb{N}^3$ satisfying (1). For example,

$$(x, y, z) = (1, 1, 2), (1, 3, 4), (1, 4, 5), (2, 5, 7), \cdots$$

Let
$$P(a) = \{n^a : n \in \mathbb{N}\}$$
 for every $a \in \mathbb{N}$.

Question 1

Given $a \in \mathbb{N}$, does there exist $(x, y, z) \in P(a)^3$ satisfying (1)?

In the case a = 2, $(x, y, z) \in P(2)^3$ satisfying (1) is called a Pythagorean triple. There are infinitely many such triples. For example,

$$(x, y, z) = (9, 16, 25), (25, 144, 169), (64, 225, 289), \cdots$$

Theorem (Fermat's last theorem (finally solved by Wiles in 1995))

If $a \in \mathbb{N}$ is greater than or equal to 3, then there does not exist $(x, y, z) \in P(a)^3$ satisfying x + y = z.

Main problem

Problems on $\mathbb{N} \longrightarrow \mathsf{Problems}$ on \mathbb{R}

Let $\lfloor x \rfloor$ be the integer part of $x \in \mathbb{R}$.

Definition

For every non-integral $\alpha > 1$, $(\lfloor n^{\alpha} \rfloor)_{n \in \mathbb{N}}$ is called the Piatetski-Shapiro sequence with exponent α . Further, we define

 $\mathrm{PS}(\alpha) = \{ \lfloor n^{\alpha} \rfloor \colon n \in \mathbb{N} \}.$

Piatetski-Shapiro sequences

Let $PS(\alpha) = \{ \lfloor n^{\alpha} \rfloor : n \in \mathbb{N} \}.$

Question 2

When does x + y = z have a solution $(x, y, z) \in PS(\alpha)^3$?

- $PS(1.2) = \{1, 2, 3, 5, 6, 8, 10, 12, 13, 15, \ldots\};$
- $PS(2.2) = \{1, 4, 11, 21, 34, 51, 72, 97, 125, 158, \ldots\};$
- $PS(3.2) = \{1, 9, 33, 84, 172, 309, 506, 776, 1131, 1584, \ldots\}.$

There is no solution $(x, y, z) \in (PS(3.2) \cap [1, 6.30 \times 10^{12}])^3$.*

Theorem (It follows from [Frantikinakis & Wierdl, 2009, Adv. Math.])

 $\forall \alpha \in (1,2), \exists^{\infty}(x,y,z) \in \mathrm{PS}(\alpha)^3 \text{ s.t. } x + y = z.$

*This was computed by Matsusaka. It can be seen in https:// www.sci.kyushu-u.ac. jp/koho/qrinews_220609.html

Main theorem I (Matsusaka & S., 2021, Acta Arith.)

For all 2 < s < t, $\{\alpha \in [s, t] : \exists^{\infty}(x, y, z) \in PS(\alpha)^3 \text{ s.t. } x + y = z\}$ is uncountable.

Corollary

There are at most countably many $\alpha \in [1, \infty)$ such that x + y = z does not have any solutions $(x, y, z) \in PS(\alpha)^3$.

Proof) If $\lfloor p^{\alpha} \rfloor + \lfloor q^{\alpha} \rfloor = \lfloor r^{\alpha} \rfloor$, then there exists $\ell = \ell(\alpha, p, q, r) > 0$ such that for all $\tau \in (\alpha, \alpha + \ell)$ we have $\lfloor p^{\tau} \rfloor + \lfloor q^{\tau} \rfloor = \lfloor r^{\tau} \rfloor$.

$$\{\alpha \in [1,\infty) \colon \exists (x,y,z) \in \mathrm{PS}(\alpha)^3 \text{ s.t. } x + y = z\}$$

$$\supseteq \qquad [] \qquad (\alpha,\alpha+\ell) \text{ This is incorrect. Indeed, let F be the}$$

§2 Motivation and Background

A sequence of real numbers $(a_i)_{i=0}^{k-1}$ is called an *arithmetic progression of length* k (k-AP for short) if there exist $a \in \mathbb{R}$ and d > 0 such that

$$a_i = a + id$$
 $(i = 0, 1, ..., k - 1).$

Problem

Fix any $k \ge 3$. If $A \subseteq \mathbb{N}$ is given, then does A contain a k-AP, or not?

For example, choose $A = P(2) = \{n^2 : n \in \mathbb{N}\}.$

$$A = \{1, 4, 9, 16, 25, 36, 49, 64, \ldots\}$$

• 3-APs: $(1, 25, 49) \longrightarrow (n^2, (5n)^2, (7n)^2)$ for every n = 1, 2, ...

• 4-APs: Euler showed that A does not contain any 4-APs in 1780.

Ramsey theory

Large size \Rightarrow Existence of a given structure

Define $[N] = \{1, 2, ..., N\}.$

Szemerédi, 1975, Acta Arith.

If $A \subseteq \mathbb{N}$ satisfies

$$\limsup_{N\to\infty} \#(A\cap [N])/N>0,$$

then A contains arbitrarily long APs.

Question 4

Fix any $k \ge 3$. Given a set $A \subseteq \mathbb{N}$ satisfying $\limsup_{n \to \infty} \#(A \cap [N])/N = 0$, does A contain a k-AP, or not?

Arithmetic progressions of primes

Let \mathcal{P} be the set of all prime numbers. By the prime number theorem, there exists a absolute constant C > 0 such that

 $\#(\mathcal{P}\cap[N])/N \leq C/\log N.$

Green & Tao, 2008, Ann. of Math. (2)

The set of all prime numbers contains arbitrarily long APs.

More precisely, Green and Tao showed the following much stronger result.

Green & Tao, 2008, Ann. of Math. (2)

Let $A \subseteq \mathcal{P}$. If A satisfies

```
\limsup_{N\to\infty} \#(A\cap [N])/\#(\mathcal{P}\cap [N])>0,
```

then A contains arbitrarily long APs.

Arithmetic progressions of Piatetski-Shapiro sequences

Let $\alpha > 1$ be a non-integral real number. For all $N \in \mathbb{N}$, we have

 $\#(\mathrm{PS}(\alpha)\cap[N])=\#\{n\in\mathbb{N}\colon\lfloor n^{\alpha}\rfloor\leq N\}\approx N^{1/\alpha}.$

We can not apply Szemerédi's theorem to Piatetski-Shapiro sequences.

Theorem (It follows from [Frantikinakis & Wierdl, 2009, Adv. Math.]) For every $1 < \alpha < 2$, $PS(\alpha)$ contains arbitrarily long APs.

Darmon & Merel, 1997 (partially by Euler, Legendre, and Dénes)

For all integers $a \ge 3$, $P(a) = \{n^a : n \in \mathbb{N}\}$ does not contain any 3-APs.

S. & Yoshida, 2019, J. Integer Seq.

Let $1 < \alpha < 2$. Let A be a subset of \mathbb{N} satisfying $\limsup_{n \to \infty} \frac{\#(A \cap [N])}{N} > 0$. Then $\{\lfloor n^{\alpha} \rfloor : n \in A\}$ contains arbitrarily long APs.

This theorem can be considered as Szemerédi's theorem on Piatetski-Shapiro sequences. Indeed, this theorem implies

Corollary

Let $1 < \alpha < 2$, and let $A \subseteq PS(\alpha)$. If A satisfies

 $\limsup_{N\to\infty} \#(A\cap [N])/\#(\mathrm{PS}(\alpha)\cap [N])>0,$

then A contains arbitrarily long APs.

$$\lfloor h^{\alpha} \rfloor = n^{\alpha} + O(1)$$

Matsusaka & S., 2021, Acta Arith.

For all 2 < s < t, $\{\alpha \in [s, t] : PS(\alpha) \text{ contains infinitely many 3-APs} \}$ is uncountable.

Main theorem II (Matsusaka & S., 2021, Acta Arith.)

Let $a, b, c \in \mathbb{N}$. For all 2 < s < t, we have

$$\begin{split} \dim_{\mathrm{H}} \{ \alpha \in [s,t] \colon ax + by &= cz \text{ has infinitely many solutions} \\ (x,y,z) \in \mathrm{PS}(\alpha)^3 \text{ with } \#\{x,y,z\} = 3\} \geq 1/s^3 \end{split}$$

Note that $\dim_{\mathrm{H}} F > 0$ implies F is uncountable.

Main theorem I (Recall)

For all 2 < s < t, $\{\alpha \in [s, t] : \exists^{\infty}(x, y, z) \in PS(\alpha)^3 \text{ s.t. } x + y = z\}$ is uncountable.

Sketch of the proof of Main theorem II

Fix any $a, b, c \in \mathbb{N}$, and real numbers 2 < s < t. Fix $x \in \mathbb{N}$. Let $J(x) \subset \mathbb{N}$ be a certain finite interval. Fix $z \in J(x)$. Take a certain y = y(x, z).

Step 1. The intermediate value theorem $\Rightarrow \exists \alpha = \alpha(x, y, z) > 0$ such that

$$ax^{lpha} + by^{lpha} = cz^{lpha}.$$

Step 2. For $n \in \mathbb{N}$, we observe that

$$\begin{aligned} |a\lfloor (nx)^{\alpha}\rfloor + b\lfloor (ny)^{\alpha}\rfloor - c\lfloor (nz)^{\alpha}\rfloor| \\ &\leq |a(nx)^{\alpha} + b(ny)^{\alpha} - c(nz)^{\alpha}| + |a\{(nx)^{\alpha}\} + b\{(ny)^{\alpha}\} - c\{(nz)^{\alpha}\}| \\ &= |a\{(nx)^{\alpha}\} + b\{(ny)^{\alpha}\} - c\{(nz)^{\alpha}\}|. \end{aligned}$$

By the theory of uniform distribution, we find $n = n(x, y, z) \in \mathbb{N}$ such that

$$|a\{(nx)^{\alpha}\} + b\{(ny)^{\alpha}\} - c\{(nz)^{\alpha}\}| < 1.$$

Therefore for such *n*, we have

$$c\lfloor (nz)^{\alpha}\rfloor = a\lfloor (nx)^{\alpha}\rfloor + b\lfloor (ny)^{\alpha}\rfloor.$$

By the above discussion, for all $x \in \mathbb{N}$ and $z \in J(x)$, there exist $\alpha = \alpha(x, y, z)$ and n = n(x, y, z)

$$c\lfloor (nz)^{\alpha}\rfloor = a\lfloor (nx)^{\alpha}\rfloor + b\lfloor (ny)^{\alpha}\rfloor.$$

Step 3. Find $\ell = \ell(x, y, z) > 0$ such that for all $\tau \in (\alpha, \alpha + \ell)$

$$\lfloor (nx)^{\alpha} \rfloor = \lfloor (nx)^{\tau} \rfloor, \ \lfloor (ny)^{\alpha} \rfloor = \lfloor (ny)^{\tau} \rfloor, \ \lfloor (nz)^{\alpha} \rfloor = \lfloor (nz)^{\tau} \rfloor.$$

Step 4. Define

$$F := \bigcap_{U=1}^{\infty} \bigcup_{U < x \le 2U} \bigcup_{z \in J(x)} (\alpha(x, y, z), \alpha(x, y, z) + \ell(x, y, z)).$$

Take any $\tau_0 \in F$. Then for every $U \in \mathbb{N}$ there exist $x_U, z_U, y_U, n_U \in \mathbb{N}$ such that $a\lfloor (n_U x_U)^{\tau_0} \rfloor + b\lfloor (n_U y_U)^{\tau_0} \rfloor = c\lfloor (n_U z_U)^{\tau_0} \rfloor$. Therefore

 $F \subseteq \{\alpha \in [s, t] : ax + by = cz \text{ has infinitely many solutions} \\ (x, y, z) \in PS(\alpha)^3 \text{ with } \#\{x, y, z\} = 3\}.$

We calculate $\dim_{\mathrm{H}} F$ by a classical method for a general Cantor set.

K. Saito

Intermediates between discrete and continuum

§5 Further researches

Glasscock, 2017 & 2020, Acta Arith.

Suppose $a, b \in \mathbb{R}$, $a \notin \{0, 1\}$ satisfy that the equation (E) y = ax + b has infinitely many solutions $(x, y) \in \mathbb{N}^2$. For Lebesgue almost all $\alpha > 1$,

- if $\alpha < 2$, (E) has infinitely many solutions $(x, y) \in PS(\alpha)^2$;
- if $\alpha > 2$, (E) has at most finitely many solutions $(x, y) \in PS(\alpha)^2$.

Glasscock, 2017, Acta Arith.

For Lebesgue almost all $1 < \alpha < 2$, there exist infinitely many $(k, m, \ell) \in \mathbb{N}^3$ such that all of

$$k, m, \ell, k+m, m+\ell, \ell+k, k+m+\ell$$

are in $PS(\alpha)$.

Perfect Euler brick

Problem involving the existence of a perfect Euler brick

Does there exists $(k, \ell, m) \in \mathbb{N}^3$ such that all of

$$k, m, \ell, k+m, m+\ell, \ell+k, k+m+\ell$$
 (2)

are in P(2)(=PS(2))?

If there was such a tuple $(k, \ell, m) \in \mathbb{N}^3$, we would prove the existence of a perfect Euler brick.

K. Saito

Glasscock, 2017 & 2020, Acta Arith.

Suppose $a, b \in \mathbb{R}$ with $a \notin \{0, 1\}$ satisfy that the equation (E) y = ax + b has infinitely many solutions $(x, y) \in \mathbb{N}^2$. For Lebesgue almost all $\alpha > 1$,

- if $\alpha < 2$, (E) has infinitely many solutions $(x, y) \in PS(\alpha)^2$,
- if $\alpha > 2$, (E) has at most finitely many solutions $(x, y) \in PS(\alpha)^2$.

S., 2022, Acta Arith.

Suppose $a, b \in \mathbb{R}$ with $a \neq 1$ and $0 \leq b < a$ satisfy that (E) has infinitely many solution $(x, y) \in \mathbb{N}^2$. Then

- for all $1 < \alpha < 2$, (E) has infinitely many solutions $(x, y) \in PS(\alpha)^2$;
- for all real numbers 2 < s < t,

 $\dim_{\mathrm{H}} \{ \alpha \in (s, t) \colon (\mathsf{E}) \text{ has infinitely many } \}$

solutions $(x, y) \in PS(\alpha)^2 \} = 2/s$.

S., 2022, Acta Arith.

For all $1 < \alpha < 2$, there exist infinitely many $(k, m, \ell) \in \mathbb{N}^3$ such that all of

$$k, m, \ell, k+m, m+\ell, \ell+k, k+m+\ell$$

are in $PS(\alpha)$.

Let
$$S(\alpha) = \{ \lfloor \alpha n^2 \rfloor : n \in \mathbb{N} \text{ and } n \ge \alpha^{-1/2} \}$$
 for all $\alpha \in (0, 1]$.

Kanado & S., 2022+, arXiv:2205.12226

For Lebesgue almost all $0 < \alpha < 1$, there exist infinitely many $(k, m, \ell) \in \mathbb{N}^3$ such that all of

$$k, m, \ell, k+m, m+\ell, \ell+k, k+m+\ell$$

are in $S(\alpha)$.

• We discussed the set of α such that there are infinitely many $(x, y, z) \in PS(\alpha)^3$ such that x + y = z as follows:

• This research is motivated by problems of APs. "Large size \Rightarrow Existence of the given structures"

• For all 2 < s < t, we have

$$\begin{split} \dim_{\mathrm{H}} \{ \alpha \in [s,t] \colon ax + by &= cz \text{ has infinitely many solutions} \\ (x,y,z) \in \mathrm{PS}(\alpha)^3 \text{ with } \#\{x,y,z\} = 3\} \geq 1/s^3. \end{split}$$

• We discussed similar problems with *y* = *ax* + *b* and perfect Euler bricks.

- H. Darmon and L. Merel, *Winding quotients and some variants of Fermat's last theorem*, J. Reine Angew. Math. **490** (1997), 81–100.
- P. Dénes, Über die Diophantische Gleichung x^l + y^l = cz^l, Acta Math. 88 (1952), 241–251.
- N. Frantzikinakis and M. Wierdl, A Hardy field extension of Szemerédi's theorem, Adv. Math. 222 (2009), 1–43.
- D. Glasscock, Solutions to certain linear equations in Piatetski-Shapiro sequences, Acta Arith. **177** (2017), 39–52.
- D. Glasscock, A perturbed Khinchin-type theorem and solutions to linear equations in Piatetski-Shapiro sequences, Acta Arith. **192** (2020), 267–288.
- B. Green and T. Tao, *The primes contain arbitrarily long arithmetic progressions*, Ann. of Math. (2), **167** (2008), 481–547.

- Y. Kanado and K. Saito, *A system of certain linear Diophantine equations on analogs of squares*, preprint, available at arXiv:2205.12226.
- T. Matsusaka and K. Saito, *Linear Diophantine equations in Piatetski-Shapiro sequences*, Acta Arith. **200** (2021), 91–110.
- K. Saito, *Linear equations with two variables in Piatetski-Shapiro sequences*, Acta Arith. **202** (2022), 161–171.
- K. Saito and Y. Yoshida, *Arithmetic progressions in the graphs of slightly curved sequences*, J. Integer Seq. **22** (2019), Art. 19.2.1, 25.
- E. Szemerédi, On sets of integers containing no k elements in arithmetic progression, Acta Arith. **27** (1975), 199–245.