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Introduction

We begin with the following equation:

x + y = z . (1)

There are infinitely many tuples (x , y , z) ∈ N3 satisfying (1). For example,

(x , y , z) = (1, 1, 2), (1, 3, 4), (1, 4, 5), (2, 5, 7), · · · .

Let P(a) = {na : n ∈ N} for every a ∈ N.

Question 1

Given a ∈ N, does there exist (x , y , z) ∈ P(a)3 satisfying (1)?

In the case a = 2, (x , y , z) ∈ P(2)3 satisfying (1) is called a Pythagorean
triple. There are infinitely many such triples. For example,

(x , y , z) = (9, 16, 25), (25, 144, 169), (64, 225, 289), · · · .
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Introduction

Theorem (Fermat’s last theorem (finally solved by Wiles in 1995))

If a ∈ N is greater than or equal to 3, then there does not exist
(x , y , z) ∈ P(a)3 satisfying x + y = z .

Main problem

Problems on N −→ Problems on R

Let $x% be the integer part of x ∈ R.

Definition

For every non-integral α > 1, ($nα%)n∈N is called the Piatetski-Shapiro
sequence with exponent α. Further, we define

PS(α) = {$nα% : n ∈ N}.
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Piatetski-Shapiro sequences

Let PS(α) = {$nα% : n ∈ N}.

Question 2

When does x + y = z have a solution (x , y , z) ∈ PS(α)3?

PS(1.2) = {1, 2, 3, 5, 6, 8, 10, 12, 13, 15, . . .};
PS(2.2) = {1, 4, 11, 21, 34, 51, 72, 97, 125, 158, . . .};
PS(3.2) = {1, 9, 33, 84, 172, 309, 506, 776, 1131, 1584, . . .}.
There is no solution (x , y , z) ∈ (PS(3.2) ∩ [1, 6.30× 1012])3.∗

Theorem (It follows from [Frantikinakis & Wierdl, 2009, Adv. Math.])

∀α ∈ (1, 2), ∃∞(x , y , z) ∈ PS(α)3 s.t. x + y = z .

α
1 2 3 4 5

∗This was computed by Matsusaka. It can be seen in https:// www.sci.kyushu-u.ac.
jp/koho/qrinews/qrinews 220609.html
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Piatetski-Shapiro sequences

Main theorem I (Matsusaka & S., 2021, Acta Arith. )

For all 2 < s < t, {α ∈ [s, t] : ∃∞(x , y , z) ∈ PS(α)3 s.t. x + y = z} is
uncountable.

Corollary

There are at most countably many α ∈ [1,∞) such that x + y = z does
not have any solutions (x , y , z) ∈ PS(α)3.

Proof) If $pα%+ $qα% = $rα%, then there exists " = "(α, p, q, r) > 0 such
that for all τ ∈ (α,α+ ") we have $pτ%+ $qτ% = $r τ%.

{α ∈ [1,∞) : ∃(x , y , z) ∈ PS(α)3 s.t. x + y = z}

⊇
⋃

α∈[1,∞) satisfying
∃(p,q,r)$pα%+$qα%=$rα%

(α,α+ ")

which is open and dense in [1,∞). The complement is at most countable.
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Motivation

A sequence of real numbers (ai )
k−1
i=0 is called an arithmetic progression of

length k (k-AP for short) if there exist a ∈ R and d > 0 such that

ai = a+ id (i = 0, 1, . . . , k − 1).

Problem
Fix any k ≥ 3. If A ⊆ N is given, then does A contain a k-AP, or not?

For example, choose A = P(2) = {n2 : n ∈ N}.

A = {1, 4, 9, 16, 25, 36, 49, 64, . . .}

3-APs: (1, 25, 49) −→ (n2, (5n)2, (7n)2) for every n = 1, 2, . . .

4-APs: Euler showed that A does not contain any 4-APs in 1780.
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Arithmetic progressions

Ramsey theory

Large size ⇒ Existence of a given structure

Define [N] = {1, 2, . . . ,N}.

Szemerédi, 1975, Acta Arith.
If A ⊆ N satisfies

lim sup
N→∞

#(A ∩ [N])/N > 0,

then A contains arbitrarily long APs.

Question 4

Fix any k ≥ 3. Given a set A ⊆ N satisfying lim sup
n→∞

#(A ∩ [N])/N = 0,

does A contain a k-AP, or not?
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Arithmetic progressions of primes

Let P be the set of all prime numbers. By the prime number theorem,
there exists a absolute constant C > 0 such that

#(P ∩ [N])/N ≤ C/ logN.

Green & Tao, 2008, Ann. of Math. (2)

The set of all prime numbers contains arbitrarily long APs.

More precisely, Green and Tao showed the following much stronger result.

Green & Tao, 2008, Ann. of Math. (2)

Let A ⊆ P . If A satisfies

lim sup
N→∞

#(A ∩ [N])/#(P ∩ [N]) > 0,

then A contains arbitrarily long APs.
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Arithmetic progressions of Piatetski-Shapiro sequences

Let α > 1 be a non-integral real number. For all N ∈ N, we have

#(PS(α) ∩ [N]) = #{n ∈ N : $nα% ≤ N} ≈ N1/α.

We can not apply Szemerédi’s theorem to Piatetski-Shapiro sequences.

Theorem (It follows from [Frantikinakis & Wierdl, 2009, Adv. Math.])

For every 1 < α < 2, PS(α) contains arbitrarily long APs.

Darmon & Merel, 1997 (partially by Euler, Legendre, and Dénes)

For all integers a ≥ 3, P(a) = {na : n ∈ N} does not contain any 3-APs.

α
1 2 3 4 5
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Szemerédi’s theorem on Piatetski-Shapiro sequences

S. & Yoshida, 2019, J. Integer Seq.

Let 1 < α < 2. Let A be a subset of N satisfying lim sup
n→∞

#(A ∩ [N])

N
> 0.

Then {$nα% : n ∈ A} contains arbitrarily long APs.

This theorem can be considered as Szemerédi’s theorem on
Piatetski-Shapiro sequences. Indeed, this theorem implies

Corollary

Let 1 < α < 2, and let A ⊆ PS(α). If A satisfies

lim sup
N→∞

#(A ∩ [N])/#(PS(α) ∩ [N]) > 0,

then A contains arbitrarily long APs.
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§3 Main theorem II
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Main theorem II

Matsusaka & S., 2021, Acta Arith.

For all 2 < s < t, {α ∈ [s, t] : PS(α) contains infinitely many 3-APs} is
uncountable.

Main theorem II (Matsusaka & S., 2021, Acta Arith.)

Let a, b, c ∈ N. For all 2 < s < t, we have

dimH{α ∈ [s, t] : ax + by = cz has infinitely many solutions

(x , y , z) ∈ PS(α)3 with #{x , y , z} = 3} ≥ 1/s3

Note that dimH F > 0 implies F is uncountable.

Main theorem I (Recall)

For all 2 < s < t, {α ∈ [s, t] : ∃∞(x , y , z) ∈ PS(α)3 s.t. x + y = z} is
uncountable.
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Sketch of the proof of Main theorem II

Fix any a, b, c ∈ N, and real numbers 2 < s < t. Fix x ∈ N. Let J(x) ⊂ N
be a certain finite interval. Fix z ∈ J(x). Take a certain y = y(x , z).

Step 1. The intermediate value theorem ⇒ ∃α = α(x , y , z) > 0 such that

axα + byα = czα.

Step 2. For n ∈ N, we observe that

|a$(nx)α%+ b$(ny)α% − c$(nz)α%|
≤ |a(nx)α + b(ny)α − c(nz)α|+ |a{(nx)α}+ b{(ny)α}− c{(nz)α}|
= |a{(nx)α}+ b{(ny)α}− c{(nz)α}|.

By the theory of uniform distribution, we find n = n(x , y , z) ∈ N such that

|a{(nx)α}+ b{(ny)α}− c{(nz)α}| < 1.

Therefore for such n, we have

c$(nz)α% = a$(nx)α%+ b$(ny)α%.
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Sketch of the proof of Main theorem II

By the above discussion, for all x ∈ N and z ∈ J(x), there exist
α = α(x , y , z) and n = n(x , y , z)

c$(nz)α% = a$(nx)α%+ b$(ny)α%.

Step 3. Find " = "(x , y , z) > 0 such that for all τ ∈ (α,α+ ")

$(nx)α% = $(nx)τ%, $(ny)α% = $(ny)τ%, $(nz)α% = $(nz)τ%.

Step 4. Define

F :=
∞⋂

U=1

⋃

U<x≤2U

⋃

z∈J(x)

(α(x , y , z),α(x , y , z) + "(x , y , z)).
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F :=
∞⋂

U=1

⋃

U<x≤2U

⋃

z∈J(x)

(α(x , y , z),α(x , y , z) + "(x , y , z)).

Step 5.

Level

U = 1: · · ·U = 1:
τ

∃x , z , y , n ∈ N s.t.
a$(nx)τ%+ b$(ny)τ% = c$(nz)τ%

U = 2: · · ·
...
F

τ0

Take any τ0 ∈ F . Then for every U ∈ N there exist xU , zU , yU , nU ∈ N
such that a$(nUxU)τ0%+ b$(nUyU)τ0% = c$(nUzU)τ0%. Therefore

F ⊆ {α ∈ [s, t] : ax + by = cz has infinitely many solutions

(x , y , z) ∈ PS(α)3 with #{x , y , z} = 3}.

We calculate dimH F by a classical method for a general Cantor set.
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Intermediates between discrete and continuum

Main problem

Problems on N −→ Problems on R
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§5 Further researches
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Glasscock’s results

Glasscock, 2017 & 2020, Acta Arith.

Suppose a, b ∈ R, a /∈ {0, 1} satisfy that the equation (E) y = ax + b has
infinitely many solutions (x , y) ∈ N2. For Lebesgue almost all α > 1,

if α < 2, (E) has infinitely many solutions (x , y) ∈ PS(α)2;

if α > 2, (E) has at most finitely many solutions (x , y) ∈ PS(α)2.

Glasscock, 2017, Acta Arith.
For Lebesgue almost all 1 < α < 2, there exist infinitely many
(k ,m, ") ∈ N3 such that all of

k , m, ", k +m, m + ", "+ k , k +m + "

are in PS(α).
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Perfect Euler brick

Problem involving the existence of a perfect Euler brick

Does there exists (k , ",m) ∈ N3 such that all of

k , m, ", k +m, m + ", "+ k , k +m + " (2)

are in P(2)(= PS(2))?

If there was such a tuple (k , ",m) ∈ N3, we would prove the existence of a
perfect Euler brick.
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Improvement of Glasscock’s result

Glasscock, 2017 & 2020, Acta Arith.

Suppose a, b ∈ R with a /∈ {0, 1} satisfy that the equation (E) y = ax + b
has infinitely many solutions (x , y) ∈ N2. For Lebesgue almost all α > 1,

if α < 2, (E) has infinitely many solutions (x , y) ∈ PS(α)2,

if α > 2, (E) has at most finitely many solutions (x , y) ∈ PS(α)2.

S., 2022, Acta Arith.

Suppose a, b ∈ R with a 2= 1 and 0 ≤ b < a satisfy that (E) has infinitely
many solution (x , y) ∈ N2. Then

for all 1 < α < 2, (E) has infinitely many solutions (x , y) ∈ PS(α)2;

for all real numbers 2 < s < t,

dimH{α ∈ (s, t) : (E) has infinitely many

solutions (x , y) ∈ PS(α)2} = 2/s.
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Improvement of Glasscock’s result

S., 2022, Acta Arith.

For all 1 < α < 2, there exist infinitely many (k ,m, ") ∈ N3 such that all of

k , m, ", k +m, m + ", "+ k , k +m + "

are in PS(α).

Let S(α) = {$αn2% : n ∈ N and n ≥ α−1/2} for all α ∈ (0, 1].

Kanado & S., 2022+, arXiv:2205.12226
For Lebesgue almost all 0 < α < 1, there exist infinitely many
(k ,m, ") ∈ N3 such that all of

k , m, ", k +m, m + ", "+ k , k +m + "

are in S(α).
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Summary

We discussed the set of α such that there are infinitely many
(x , y , z) ∈ PS(α)3 such that x + y = z as follows:

α
1 2 3 4 5

This research is motivated by problems of APs.

”Large size ⇒ Existence of the given structures”

For all 2 < s < t, we have

dimH{α ∈ [s, t] : ax + by = cz has infinitely many solutions

(x , y , z) ∈ PS(α)3 with #{x , y , z} = 3} ≥ 1/s3.

We discussed similar problems with y = ax + b and perfect Euler
bricks.
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