

グラフの良い向きづけと 半辺彩色について

元 g-kawatani-7a5@sophia.ac.jp

本日の内容

2. 無向グラフの良い向き付け

3. 良い向き付けと半辺彩色

どのような無向グラフが埋め込み可能か?

平面埋め込み可能なグラフの例

平面埋め込み不可能なグラフの例

平面埋め込み可能な条件は何か?

無向グラフの閉曲面への埋め込み

この2つの 違いはなに?

この2つのグラフは平面的?

K、が平面に交差なく埋 め込めると仮定する。

K₅が平面に交差なく均 め込めると仮定する。

① 各辺はちょうど2つの面の境界 である。

_	

10

① 各辺はちょうど2つの面の境界

②各面は3つ以上の辺に囲まれて

① 各辺はちょうど2つの面の境界

②各面は3つ以上の辺に囲まれて

 $2 E \ge 3 F が成立する。$

(1)、(2)より、

$2 E \ge 3 F が成立する。$

オイラーの定理 F = 2 - V + Eに対して、代入すると、 $2E \ge 3(2 - V + E)$

 $E \ge 3V - 6 \& table a$

13

1)、(2)より、

$2E \ge 4F$ が成立する。

オイラーの定理 F = 2 - V + Eに対して、代入すると、 $2E \ge 2(2 - V + E)$

 $E \geq 2V - 4 \& Carbon a$

Theorem B (Appel and Haken). 平面グラフは4彩色可能である.

無向グラフの閉曲面への埋め込み

グラフGが平面的グラフであるための必要十分条件はGが

Minorによる他の閉曲面での特徴付け

無向グラフの閉曲面への埋め込み

16

どのような<u>有向</u>グラフが埋め込み可能か?

無向グラフの閉曲面への埋め込み

17

本日の内容

2. 無向グラフの良い向き付け

3. 良い向き付けと半辺彩色

ある閉曲面 F に対して、有向グラフ D が次の2つを満たすように

・無向基礎グラフ(underlying graph)が F に埋め込まれている.

・各頂点について、その頂点を始点とする辺と終点とする辺が

ある閉曲面 F に対して、有向グラフ D が次の2つを満たすように

各頂点について、その頂点を始点とする辺と終点とする辺が

辺の交差なく 描けている!

- ある閉曲面 F に対して、有向グラフ D が次の2つを満たすように
 - ・無向基礎グラフ(underlying graph)が F に埋め込まれている. 各頂点について、その頂点を始点とする辺と終点とする辺が

- ある閉曲面 F に対して、有向グラフ D が次の2つを満たすように
 - ・無向基礎グラフ(underlying graph)が F に埋め込まれている.
 - ・各頂点について、その頂点を始点とする辺と終点とする辺が

どのような有向グラフが埋め込み可能か?

これ以降、扱う有向グラフは (正則有向グラフ, Regular digraph) とする。

25

Observation 3.-閉曲面 F に有向グラフ D が埋め込み可能であることと、F に おいて D (の無向基礎グラフ)がface 2-colorableであることは 同値である.

Observation 3.-閉曲面 F に有向グラフ D が埋め込み可能であることと、F に おいて D (の無向基礎グラフ)がface 2-colorableであることは 同値である.

有向グラフの埋め込みの性質を保存する局所変形 Definition (Splitting). 有向グラフにおける頂点 v の splitting とは, 有向辺{x, v}, {v, y} を除去し, 新たな有向辺{x,y}を加える操作. $\boldsymbol{\chi}$ X splitting 1) 1)

有向グラフ K が有向グラフ G から splitting を繰り返して得られ

Theorem C (Johnson). 2-正則有向グラフ D が平面埋め込み可能である必要十分条件 は D が $C_3^{(2)}$ をimmersionとして含まないことである.

平面埋め込み可能な例

無向グラフの良い向き付け

Note. Circle graphが2部グラフ ↔Dは平面埋め込み可能

 c_2

 a_{γ}

 \boldsymbol{a}

証明のアイデア (平面埋め込み可能性の判定)

平面埋め込み可能な例

無向グラフの良い向き付け

Note. Circle graphが2部グラフ ↔Dは平面埋め込み可能

circle graph

 $\boldsymbol{\mathcal{A}}$

Observation 2(再揭). 閉曲面 F に埋め込まれた有向グラフ D の 各面は有向閉路となる. (今回は3角形) Observation 2'. 閉曲面 F に埋め込まれた有向グラフ D の 各辺は2つの有向閉路に含まれるとなる. $V - E + F \le 3 - 6 + - =$

/Theorem C (Johnson)(再揭). は $D \, \mathcal{M}_{3}^{(2)}$ をimmersionとして含まないことである.

Graph minorとGraph immersion

無向グラフの閉曲面への埋め込み

r-正則有向グラフ(r≧4)だと同じアイデアは… Proposition 4.- $C_{2}^{(2)}$ をimmersionとして含む平面埋め込み可能な正則有向グラ

フが存在する.

r-正則有向グラフ(r≧4)だと同じアイデアは… Proposition 4.- $C_2^{(2)}$ をimmersionとして含む平面埋め込み可能な正則有向グラ

フが存在する.

r-正則有向グラフ(r≧4)だと同じアイデアは…

無向グラフの良い向き付け

平面性について 別途考える必要が出てくる

K₅-minor

face 2-colorableという性質を保存す る局所変形でグラフの列挙をしてみる

無向グラフの良い向き付け

おいて D (の無向基礎グラフ)がface 2-colorableであることは

ひとまず2-正則以外の有向グラフを考えるために , Theorem F (Nakamoto et al.).by N-flips and P₂-flips.

無向グラフの良い向き付け

Any two even triangulations on the sphere with the same number of vertices can be transformed into each other

D, D': regular digraphs on the sphere, and |D| = |D'|. If their underlying graphs are simple even triangulations, mergings preserving the number of vertices.

無向グラフの良い向き付け

D, D': regular digraphs on the sphere, and |D| = |D'|. If their underlying graphs are simple even triangulations, mergings preserving the number of vertices.

無向グラフの良い向き付け

D, D': regular digraphs on the sphere, and |D| = |D'|. If their underlying graphs are simple even triangulations, mergings preserving the number of vertices.

無向グラフの良い向き付け

D, D': regular digraphs on the sphere, and |D| = |D'|. If their underlying graphs are simple even triangulations, mergings preserving the number of vertices.

無向グラフの良い向き付け

D, D': regular digraphs on the sphere, and |D| = |D'|. If their underlying graphs are simple even triangulations, mergings preserving the number of vertices.

無向グラフの良い向き付け

D, D': regular digraphs on the sphere, and |D| = |D'|. If their underlying graphs are simple even triangulations, mergings preserving the number of vertices.

無向グラフの良い向き付け

D, D': regular digraphs on the sphere, and |D| = |D'|. If their underlying graphs are simple even triangulations, mergings preserving the number of vertices.

無向グラフの良い向き付け

D, D': regular digraphs on the sphere, and |D| = |D'|. If their underlying graphs are simple even triangulations, mergings preserving the number of vertices.

無向グラフの良い向き付け

D, D': regular digraphs on the sphere, and |D| = |D'|. If their underlying graphs are simple even triangulations, mergings preserving the number of vertices.

無向グラフの良い向き付け

then they can be transformed into each other by a sequence of splittings and

D, D': regular digraphs on the sphere, and |D| = |D'|. If their underlying graphs are simple even triangulations, mergings preserving the number of vertices.

無向グラフの良い向き付け

then they can be transformed into each other by a sequence of splittings and

D, D': regular digraphs on the sphere, and |D| = |D'|. If their underlying graphs are simple even triangulations, mergings preserving the number of vertices.

無向グラフの良い向き付け

then they can be transformed into each other by a sequence of splittings and

D, D': regular digraphs on the sphere, and |D| = |D'|. If their underlying graphs are simple even triangulations, mergings preserving the number of vertices.

無向グラフの良い向き付け

then they can be transformed into each other by a sequence of splittings and

D, D': regular digraphs on the sphere, and |D| = |D'|. If their underlying graphs are simple even triangulations, mergings preserving the number of vertices.

無向グラフの良い向き付け

then they can be transformed into each other by a sequence of splittings and

D, D': regular digraphs on the sphere, and |D| = |D'|. If their underlying graphs are simple even triangulations, mergings preserving the number of vertices.

無向グラフの良い向き付け

then they can be transformed into each other by a sequence of splittings and

D, D': regular digraphs on the sphere, and |D| = |D'|. If their underlying graphs are simple even triangulations, mergings preserving the number of vertices.

無向グラフの良い向き付け

then they can be transformed into each other by a sequence of splittings and

D, D': regular digraphs on the sphere, and |D| = |D'|. If their underlying graphs are simple even triangulations, mergings preserving the number of vertices.

無向グラフの良い向き付け

then they can be transformed into each other by a sequence of splittings and

D, D': regular digraphs on the sphere, and |D| = |D'|. If their underlying graphs are simple even triangulations, mergings preserving the number of vertices.

無向グラフの良い向き付け

D, D': regular digraphs on the sphere, and |D| = |D'|. If their underlying graphs are simple even triangulations, mergings preserving the number of vertices.

無向グラフの良い向き付け

then they can be transformed into each other by a sequence of splittings and

D, D': regular digraphs on the sphere, and |D| = |D'|. If their underlying graphs are simple even triangulations, mergings preserving the number of vertices.

無向グラフの良い向き付け

D, D': regular digraphs on the sphere, and |D| = |D'|. If their underlying graphs are simple even triangulations, mergings preserving the number of vertices.

無向グラフの良い向き付け

D, D': regular digraphs on the sphere, and |D| = |D'|. If their underlying graphs are simple even triangulations, mergings preserving the number of vertices.

無向グラフの良い向き付け

D, D': regular digraphs on the sphere, and |D| = |D'|. If their underlying graphs are simple even triangulations, mergings preserving the number of vertices.

無向グラフの良い向き付け

D, D': regular digraphs on the sphere, and |D| = |D'|. If their underlying graphs are simple even triangulations, mergings preserving the number of vertices.

無向グラフの良い向き付け

D, D': regular digraphs on the sphere, and |D| = |D'|. If their underlying graphs are simple even triangulations, mergings preserving the number of vertices.

無向グラフの良い向き付け

D, D': regular digraphs on the sphere, and |D| = |D'|. If their underlying graphs are simple even triangulations, mergings preserving the number of vertices.

無向グラフの良い向き付け

D, D': regular digraphs on the sphere, and |D| = |D'|. If their underlying graphs are simple even triangulations, mergings preserving the number of vertices.

無向グラフの良い向き付け

D, D': regular digraphs on the sphere, and |D| = |D'|. If their underlying graphs are simple even triangulations, mergings preserving the number of vertices.

無向グラフの良い向き付け

D, D': regular digraphs on the sphere, and |D| = |D'|. If their underlying graphs are simple even triangulations, mergings preserving the number of vertices.

無向グラフの良い向き付け

D, D': regular digraphs on the sphere, and |D| = |D'|. If their underlying graphs are simple even triangulations, mergings preserving the number of vertices.

無向グラフの良い向き付け

D, D': regular digraphs on a closed surface F.

Then there exists a positive integer $N(\mathbf{F})$ such that mergings preserving the number of vertices.

無向グラフの良い向き付け

- if $|D| = |D'| \ge N(\mathbf{F})$ and their underlying graphs are simple even triangulations, then they can be transformed into each other by a sequence of splittings and

平面には埋め込みできていないが…

無向グラフの良い向き付け

平面には埋め込みできていないが…

無向グラフの良い向き付け

ハンドルやクロスキャップ をつけると種数は上がる が埋め込みは可能

無向グラフの良い向き付け

$n \leq 7$ とし、 T_n を無向基礎グラフが K_n と同型な正則有向グラフとする. このとき, T_nは一意的であり, かつトーラスに埋め込み可能である.

本日の内容

1. 無向グラフの閉曲面への埋め込み

2. 無向グラフの良い向き付け

各頂点の周りに 巡回群乙加が 順々に現れている

各頂点の周りに 巡回群乙加が 順々に現れている

Rule 1. $i, j \in Z_s$ $j \to 0, i \neq j$

t-正則グラフに対して, clockwise s-labelingとは次の2つの条

e

Rule 1. $i, j \in Z_s$ $j \to 0, i \neq j$

良い向き付けと半辺彩色

t-正則グラフに対して, clockwise s-labelingとは次の2つの条

Rule 1.

 $i, j \in Z_s$ かつ, $i \neq j$ i e i

良い向き付けと半辺彩色

t-正則グラフに対して、clockwise s-labelingとは次の2つの条

107

Clockwise labeling (半辺彩色)の例

Clockwise ?-labeling

良い向き付けと半辺彩色

face 2-coloring Clockwise 2-labeling

半辺彩色の塗り替え Observation 7. 向き付け可能閉曲面Fに埋め込まれたk-正則グラフGが clockwise i-labelingを持つならば、Gはclockwise j-labelingを 持つ. ただし, $j \equiv 0 \pmod{i}$ (mod i)かつ, $k \equiv 0 \pmod{j}$.)

良い向き付けと半辺彩色

Clockwise 2-labeling — Clockwise 4-labeling

Observation 7.-向き付け可能閉曲面Fに埋め込まれたk-正則グラフGが clockwise i-labelingを持つならば、Gはclockwise j-labelingを 持つ. ただし, $j \equiv 0 \pmod{i}$, $k \equiv 0 \pmod{j}$.)

良い向き付けと半辺彩色

Clockwise 2-labeling — Clockwise 4-labeling

114

一般の閉曲面

Face 2-colorableな埋め込みを 持つ2k-正則グラフ

Clockwise 2-labelingを持つ

2k-正則グラフ

平面については?

[証明の概略] グラフGから, 次のようにして

特別なグラフHを構成する.

[証明の概略]

[証明の概略] 各頂点のコピーを3つずつ用意

各頂点のコピーを3つずつ用意

I: Hの最大独立点集合

H:

I:Hの最大独立点集合

GOcover H:

I:Hの最大独立点集合

GOcover

